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ABSTRACT )
25
The Navier-Stokes equations are solved exactly for the motion
of the liquid in a liquid-filled cylindrical tank with oscillation about the
longitudinal axis. The moment due to the viscous shear at the tank wall
is caiculated. Eguations for the effective moment of inertia of the
liquid are presented for both a ‘}ery large coefficient of viscosity and a
normal coefficient of viscosity. An equation for the velocity ratio is
derived and velocity ratio profiles are presented. A comparison of the
analytical and experimental effective moment of inertia ratios shows

good agreement,
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INTRODUCTION

The problem of the oscillating liquid-filled cylindrical propellant
tank is important in the state-of-the-art missile design. This problem
must be considered for both structural evaluation and flight control

requirements of a large missile,

Additional structural loads are imposed on the propellant tank
and associated tank structure by the relative motion of the liquid pro-
pellant. The viscous shear stress of the liquid propellant at the tank
wall creates a moment. This moment is in the direction opposite to the
tank motion and resists additional tank displacement, The effective

moment of inertia of the liquid is defined by the ratio

My=a

1 = =
eff B

where Mr=3 is the moment due to the viscous shear at the tank wall and 3

is the angular acceleration of the tank.

A theoretical analysis of the effective moment of inertia of a ligquid-
filled cylindrical tank with oscillation about the longitudinal axis is pre-
sented in this report. Equations are given for the special cases of a very
large liquid propellant coefficient of viscosity and a small coefficient of
viscosity. An analysis of the velocity profiles is also included. This

information is presented in both analytical and graphical form.




THEORETICAL INVESTIGA TION

FORMULATION OF THE EQUATIONS

The coordinate system for the cylindrical tank is shown in
Figure 1. A cylindrical tank with smooth walls, i.e. no internal
obstructions, is assumed for simplicity. It is further assumed that

the tank is long in order to neglect the end effects,

The ligquid dynamics of this system are represented by the
Navier - Stokes and Continuity equations. These equations are taken

from Reference 1.

Navier-Stokes Equations (Cylindrical Coordinates)

Xtavr_Vg A2 _ _9p
"( +Vrar+ra¢ r+VZaz) Fr-3;
0% Vr

Ve, o Ve, Vo Ve VeVe, V) _p,  12p
"(at+vra+ra¢+ Zz)‘F¢‘ra¢

0%V 1 oV Vv 1 o2V 2
+p(___£+,_$ _£E+_Z___$+_r_£

Vr  02V¢
or? r Oor  r2 r2 o2 * ) (2)

¢ dz®

oVy 0V, V¢ 0Vz 0Vz\ _ dp
P ot * Vr ar+r a¢+Vzaz -Fz—az

1. aZVZ aZVz)

1
T or? +; or +r_z 02 * 0z?2 (3)




Figure 1.

2a

Cylindrical Tank Coordinate System
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Continuity Equation (Cylindrical Coordinates)

A% oV
—ﬂ;‘—bwtazt:o . (4)

aVr.}.XL.{.
dr T

|

The equations for the shear stress are also taken from Reference 1.

Stress Components

_ o (V 1 0V
Tr¢-“[r‘a';(7)+;‘a'ﬂ (5)

(6)

A oV
- oVr , 8 V2
Trz = P <az * or ) (7)

Equations 1 through 7 must be solved for the desired boundary conditions

imposed upon the tank motion.

ASSUMED TANK MOTION AND RESULTING LIQUID DYNAMICS

A smooth-walled cylindrical tank with motion about the longitudinal
axis is assumed. The motion of the tank is assumed to be an undamped,
forced oscillation that may be described by

iwt
b = e (8)
where ¢o is the amplitude of the angular displacement and w is the fre-

quency of the oscillations., It is further assumed that the tank is long

and the end effects may be neglected.

These assumptions are satisfied if the fluid velocity components

are
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Vr =0 (9)
vV, = 0 (10)
Voo, = ab = iawdy et . (11)

The Navier-Stokes, continuity, and stress-component equations may

be simplified by the substitution of these boundary conditions in Equations

1 through 7.

Navier- Stokes Equations

ap _ Vo

or P T _ (12)
0Vo p (02Ve . 1 9Ve Vo
St T e \ e YT 3 T (13)

. o (Ve s

Equations 13 and 14 must be solved for the fluid velocity distribution and
shear stress respectively. Equation 12 may be solved for the pressure

as a function of the tank radius if desired.

SOLUTION OF THE SIMPLIFIED NAVIER-STOKES EQUATION

The simplified Navier- Stokes equation is an equation of the form

Ve = R(r) - T(t) . (15)
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This equation may be solved by the standard separation of variable

technique since

T' (Rll
— = =+
Y\ R

|

1
.1;—'-_—1-) = % A (16)

where N\ is a constant that must satisfy the boundary conditions. The

complete solution to Equation 16 is
- iw \L ] - (iw 1 At
V = — )2 — )2
¢(r,t) {Al 11 [ I ( ¥ ) J + B1 K1 [1‘ v ) ]}e . (17)

A; and B, are constants to be determined from the boundary conditions
1 1
and I; [r(iw/v)2] and K, [r(iw/v)2] are modified Bessel functions of

the first and second kind and first order respectively.

The boundary condition of a zero velocity at the tank axis requires

the constant B; = 0 since I; (o) = 0 and K; (o) # 0. The boundary condition

. iwt
Vq’r:a = iawdg ™ (11)

may be used to evaluate the constant A, as

Ay = _ fawdy (18)

=)

The equation for the fluid velocity as a function of the radius,

fluid properties, and tank oscillation frequency is

(19)




Equation 19 may be interpreted as a vector at a given phase angle with
respect to the tank displacement vector. Using this interpretation,

Equation 19 may be written

Vq, = awdy

lot+ (m/2)] h [r(_v_)%] (20)
[ (1]
|\ )7

The imaginary arguments of the modified Bessel function may be
simplified. A complete analysis including velocity profiles is presented

in Appendix D.

SOLUTION FOR THE SHEAR STRESS

The equation for the shear stress is rewritten for convenience.
0 A
o = vy () 1)

After substitution of the equation for the fluid velocity, Equation 14

becomes

. -
. ] jw \1
prawdg el[wt+(w/2)] d L LT (T)ZJ
(21)
r

T

The procedure for the evaluation of the derivative in Equation 21
is presented in Appendix A. After substitution of the value for the

derivative, Equation 21 may be written

- io\L [ /iw\r joND
_ prawgy oWt (7/2)] = (2)> 1°[r TH- 2 h[r T)Z]

r i 1
Pon ()] :

. (22)
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Equation 22 may be simplified

D fime

st | en )
pol r Il] a( )ZJ

-(23)

Equation 23 is an equation for the shear stress profile as a function of

the tank radius, fluid properties, and tank oscillation frequency.

The shear stress at the tank wall is determined from Equation 23

]
1

Equation 24 in this form is difficult to use due to the imaginary arguments

evaluated at r=a.

tofe

(1(»
a2
v

)
n|a()

Io

il wtt (w/2)] A . iw) 2 (24)

\%4

Trppo, - Hooe

[

r—|—

of the modified Bessel functions. Another function will be introduced in

a later section of this report.

EFFECTIVE MOMENT OF INERTIA

The effective moment of inertia of the liquid-filled oscillating

cylindrical tank is defined as

Iegr = —= (25)
where
Mi=, - moment due to the shear stress at the tank wall
$ - angular acceleration of the oscillating tank

The angular acceleration of the oscillating tank is obtained by differenti-

ating Equation 8 twice with respect to time.



T ua— TNy T W

The moment due to the shear stress at the tank wall is

My=, = 2ma’h Trépey - (26)

The shear stress at the tank wall is given by Equation 24. After sub-

stitution of Equation 24 into Equation 26, the equation for the moment

at the tank wall is

. Io .
My, = 2 ma? hpwdp a(_lv“")% . s el[wt‘f' (w/2)] 27)
‘ Il l:a( )

The effective moment of inertia of the liquid-filled oscillating
tank is evaluated by substitution of the equations for the moment and
angular acceleration in Equation 25. Making these substitutions, the

equation for the effective moment of inertia is

w

. Io a( >
2mazh 1 |
I = —=2 ) o -a(if)a — L= (28)
11 a( )

The modified Bessel functions with imaginary arguments may be written

in another manner to improve the usefulness of Equation 28.

In Appendix B it is shown that the modified Bessel functions with
imaginary arguments may be written in terms of Bessel functions of the

first kind. Writing Equation 28 in this manner

ei(Tr/Z) (29)

Tetf

Lo’ (LT Ll

3
Jo [12 a(
3
2mazhp 5 a(g)% iz _
w

[
—
- .
b
[+Y]
N
<l€|<|E
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The validity of Equation 29 may be proven by showing that Ieff
is equal to the moment of inertia of a solid with the same dimensions
as the coefficient of viscosity approaches infinity, i.e.,

mathp

lim  leff = Igolid = > . (30)
00

Before Equation 29 can be evaluated for a fluid with an infinite coefficient

of viscosity, Equation 29 must be written in an alternate form

1%

3 1!
.2 w2
ZTTa.th- .§. (w )% Jo [1 a(v)

Igf = —— { 2-i%a C i (31)

A direct substitution of an infinite coefficient of viscosity into
Equation 31 results in an indeterminate form. An application of
L'Hopital's rule still yields an indeterminate form. In Appendix C the
series definition of the Bessel functions is utilized to evaluate the
effective moment of inertia of an oscillating cylindrical tank filled with

a fluid having an infinite coefficient of viscosity.

A more useful form of Equation 31 would be an equation that did
not contain imaginary quantities and Bessel functions with imaginary
3
arguments. The following definition of Jn(izx) was obtained from

Reference 2

% 3n/2 0 (_l)m xn+4m
In(i"x) =i n+4m
m=0 2 (2m)! (n+2m}!
io ( 1)rn xn+2+4m
+ i — . (32)
meo 2°T2TAM Gt 1) (et 2met 1)

10



For conservation of space, Equation 32 will be written

3 .3n/2
I (i%x) = i Yot Zz) (33)
where Zl and ZZ represent the first and second summations in
Equation 32 respectively. Using deMoivre's theorem, i 3n/2 may
be written
3n/2 3n/2 3 3
i n/ = (cos I + i 51n——) = cos 287 + i sin ot (34)
2 4 4
Equation 33 may be simplified using the results of Equation 34,
3 .
3 3nm 3nw
.2 _ :
Jh(i®x) = (cos 2 Zl - sin = Zz)
3nw 3nw )
i — i . 35
+1(cos 2 Z?_-l~51n4 Zl (35)

The real and imaginary parts of Equation 35 are defined as the functions

bery(x) and beip(x) such that

jw

Jn(i®x) = berp(x) + bein(x) ) (36)

Equation 31 may be rewritten in terms of these functions with the aid

of Equation 36.

(37)

wp\ 1 . . (wp)i
2 bod o) 1
2mazhp % . (wp)l beryg La(p) :l+ i belo[a m
p

Iefs = 2 -1 2 1 1
K ber, [a 9—-)3:}+ i be11[a %)2

w

| SN | | IS

11
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The real and imaginary parts of Equation 37 may be separated

using the following relationships:

i2 = cos =% + isin—i—" (38)

and

berg(x) + ibeig(x)
ber,;(x) + ibei;(x)

= [ berg (x) ber; (x) + beio (x) bei; (x)] {[ber; (x) ]2 +[bei; (x)]* }*
+i[beip (x) ber; (x) - bero (x) bei; (x)] {[ber1(x)]? + [bei;(x)]2}! (39)
where

1
% = a(ﬂ)z
n

When Equations 38 and 39 are substituted in Equation 37 and the indicated
multiplications are completed, the following equation for the effective

moment of inertia is obtained.

3w . .
_ 2mathy ( ﬂ)ﬁ‘ cos - [beig(x) ber; (x) - bero (x) bei; (x)]
A\ ber; 2(x) + bei;Z(x)

sin -3;11 [bero (x)ber; (x) + beio (x)bei; (x)]

ber;?(x) + bei; ?(x)

sin -341 [ beig (x) ber; (x) - bero(x)bei; (x)]

vi 2+ (%)l
! a v 2 ber; % (x) + bei,? (x)
3 . .
cos e [bero (x)ber; (x) + beig (x) bei, (x)]

ber;?(x) + bei;?(x) (40)

12



One final simplification in this equation may be made since

Making this simplification:

1 .. o Zmathy a(_c:)_p_ 3 _beio (x) ber; (x) + bero (x) bei) (x)
eff w 21 ber; 2 (x) + bei; ? (x)

bero (x) ber; (x) + beig(x)bei; (x) 1
ber:i2(x) + beij?(x) |

. wp \1 | beip(x)ber;(x) - berg (x)bei (x)
' 1{2+ a(zp)z [ ber;2(x) + beii?(x)

berp (x) ber; (x) + beig(x)beiy (x) h}) (41)

ber;2(x) + beiy?(x) !

—

where

This equation for the effective moment of inertia is valid for both large

and small arguments of the ber and bei functions.

For most applications, the argument of the ber and bei functions
will be large since the viscosity of most liquids of interest will be small.
An investigation of any table of ber and bei functions (see Table 1) indi-

cates that the following expansions may be made:

13
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berg(x) = Mg(x) cos g (x) \
beig(x) = Mjp(x) sin 0y (x)

) (42)
ber;(x) = M;(x) cos 8, (x)
bei;(x) = M;(x) gin 0;(x)

/

where
eo(X) =(X/'\[Z_)—A = R-A \
8;(x) =(x/N2)+B =R+ B >
(43)

My (%) =(C/'\/§)ex/'\/—2_
Mi(x) = (DWE) /N2 )

In the expressions above, A, B, C, and D are constants listed in the

tables of these functions.

The products of the terms in Equation 42 necessary for substi-

tution in Equation 41 are:

bero(x) ber; (x) = Mg (x) M;(x) cos (R-A) cos (R+B) \

beip (x) bei; (x) = Mo (x) M; (%) sin (R-A) sin (R+ B)

(44)
beig (x) ber; (x) = Mp(x) M; (x) sin (R-A) cos (R+B) >

bero(x) bei; (x) = Mo (x) M) (x) cos (R-A) sin (R+ B)

The substitution of trigonometric identities and simplification of the above

results in the following equations:

15



berg (x) ber; (x) Mg (x) M; (x)[-3 sin 2R sin (B-A)

+ cos?R cos A cos B - sin’R sin A sin B]

beip (x) bei; (x) Mo (x) M, (x) [3 sin 2R sin (B-A)

+ sin2R cos A cos B - cos?R sin A sin B]

)(45)

beig (x) ber; (x) Mo (x) M, (x)[‘i sin ZR cos (B-A)

- sin2R cos A sin B - cos?R sin A cos B]

berg (x) bei) (x) Mo (x) M; (x)[ 3 sin 2R cos (B-A)

+ cos?R cos A sin B + sin?R sin A cos B] )

The final equation for the effective moment of inertia is obtained

by substitution of Equation 45 into Equation 41.

2wmath wpl\L M )
Iefr = —lr—a(:—“ a(-2—3>2 ﬁ% [ sin(B+A) + cos(B+ A)] (46)
+ i {2 + a(%ﬁ-)% Iﬁﬁfg [ cos(B+A) - sin(B+A)]}
where

Equation 46 is valid for any argument x if the appropriate values of the

constants are taken from a table of the ber and bei functions.

A trigonometric expansion of the ber and bei functions may be made
for large arguments to simplify Equation 46. Since the arguments of the
ber and bei functions will be large for typical values of tank oscillation
frequency and liquid parameters, an expansion of the ber and bei functions
is presented in the following section.

16




EFFECTIVE MOMENT OF INERTIA FOR LARGE ARGUMENTS

An examination of a table of values for ber and bei functions
with arguments greater than 1000 indicates that the constants in
Equation 43 do not change with increasing arguments. For arguments
having at least this order of magnitude, the following values of the

necessary constants are taken from Table 1:

A = 0.39270
B = 1.17810 (47)
Mo(x) = M,(x)

The value of the trigonometric functions necessary for substitution in

Equation 46 are

sin (B+A)

sin (1.57080)

sinw/2 = 1
(48)
cos (Bt A)

]

cos(1.57080)

cosm/2 = 0
The equation for the effective moment of inertia for oscillating

cylindrical tanks valid for large arguments of the ber and bei functions

may be obtained by substitution of Equation 48 into Equation 46,

- Zmathy [ (9PVy g 4P}
Iegr = " ia o + 1 1-2 - a m . (49)

Since it was assumed that

the following approximation for Equation 49 may be made without

significant error.

17



2 2 .
I.ff = madh (—ut’ﬁ>z - [1-3] . (50)

Equation 50 consists of both a real and imaginary part. Another
manner of presentation would be a vector at a phase angle with respect
to the tank displacement. Using this notation, the effective moment of
inertia may be written
.m/4

e’ (51)

o

p
legf = 2ma3sh ("‘;—)

Equation 51 indicates that the vector for the effective moment of

inertia lags the tank displacement vector by /4.

MOMENT OF INERTIA RATIO

The available state-of-the-art literature indicates that the ratio
of the effective moment of inertia to the moment of inertia of a solid
with the same dimensions is a useful parameter. The moment of

inertia of a solid cylinder about the longitudinal axis is

1
Isolid = 5 ma? (52)
where m is the mass and a is the radius of the cylinder. Substitution
of the mass in terms of density and radius into Equation 52 will result
in the following equation for the effective moment of inertia of a solid

cylinder.

Ta4ph
Isolid = 2 (53)

The effective moment of inertia ratio may be calculated by the
ratio of Equations 46 and 53 or by Equation 51 and 53. These ratios

are

18



leff  _ _4p ({a .w_P_)% i_’i%_) [sin(B+A) + cos(B+A)]} (54)

Isolid wazp 2 )
1
+ i {2 + a %)TPL-)E ﬁ—:gﬁ% [cos(B+A) - sin(B+A)]})
and
1 . /4
Teff o 4 (L )e e . (55)
Isolid azpw

L
Equation 54 is valid for both large and small values of (w/v)2 but Equation

55 is valid only for values

VELOCITY RATIO AS A FUNCTION OF RADIUS RATIO

The fluid velocity ratio in the tank is also of interest. Large
velocity ratios will indicate the location where baffles are required to
decrease the fluid motion. Small velocity ratios will indicate where
propellant lines or other obstructions could be located to influence the

fluid motion the least.

The ratio of the velocity at any radius to that at the tank wall is
found by evaluating Equation 19 at these boundary conditions and taking

the ratio. This ratio is

ve I Lr(ive)z_i 56)
V¢r=a I, [a(—%—)%}
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Equation 56 may be simplified by a similar approach to the one taken
for the effective moment of inertia. The detailed derivation is presented

in Appendix D. The final equation for the velocity ratio is

L fafz o b o

where

M;(x) ~ A constant taken from Table 1 at the proper argument
and used in the evaluation of the magnitude of the ber;
and bei; functions

0;(x) - A constant taken from Table 1 at the proper argument
and used in the evaluation of the phase angle of the
ber; and bei; functions.
The absolute value of the velocity ratio is presented in Figure 3
1
as a function of the parameter a(wp/p)2. Figure 4 shows the velocity
ratio near the tank wall in more detail. As would be expected, the inertia
1
forces dominate at the higher values of a(wp/p)2, and the viscous forces

influence the fluid motion at the lower values.
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Figure 3. Velocity Ratio
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COMPARISON OF THEORY WITH EXPERIMENTAIL VALUES

The theoretical analysis of the effective moment of inertia ratios
discussed in this report was compared with experimental values. Only
a minimum of applicable experimental information was discovered in the

literature (Reference 4). A sketch of the experimental equipment that

was used in Reference 4 is shown in Figure 5. The experimental procedure

was to rotate the air bearing table from its equilibrium position. The
torsional stress in the torsion bar exerted a restoring force to the air
table. Assuming that the losses in the air bearing table and the torsion
bar are small, the forced oscillations produced by this experimental
system are essentially the same as the boundary condition given by

Equation 8.

Experimental information was obtained for two tank sizes. The
dimensions of these tanks and the experimental values are listed in
Table 2. A comparison of the analytical and experimental values of the
effective moment of inertia ratios is presented in Figure 6. The approxi-

mate equation for the effective moment of inertia ratio is used because

(i‘%"—) > 2.0 X 10

The agreement at large values of (a2w /v) is good and indicates
that the theory derived in this reportis valid. Additional comparison

with experimental values at other values of (a2w/v) outside the range

2.0X10% = (E__i_“i) s 106
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Figure 5. Sketch of Experimental Equipment
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Tank

baw»

TABLE 2

PHYSICAL CHARACTERISTICS OF THE
CYLINDRICAL TANKS

h
{in.)

6.0
12.0
19,25
36.0

1.93
3.80
5.65
7.53
11.35

(in.)

11.875
11.875
11.875
11,875

3.75
3.75
3.75
3.75
3.75

h/a

0.506
1.010
1.622
3.03

0.516
1.014
1.506
2.00
3.03

26

Teff
(in. -1b-sec?)

0.10
0.17
0.22
0.52

0.0014
0. 0020
0.0027
0. 0034
0.0047

[@ N M e]

[N elNeNolNe)

l/w
(sec)

.51098
. 53993
. 68313
. 81227

. 3855
. 3859
.3864
.3868
.3878
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APPENDIX A

L | e (2)E ]
I

EVALUATION OF a—aI:

1 1 1
R IRTTOC RPN By PO ey |
d 1 il:‘ (IV):l] _ T dr {I}[r(lv/ }-Il[r\v /2}} (A. 1)
dr r B r? .

Reference 2 may be used to obtain an equation for the evaluation of the

derivative of the modified Bessel function as

d | 1 1 d
I [ Imw] = [In_l(u)-ﬁ a(w) | o .2

After application of the results of Equation A, 2 in Equation A. 1,

e (O] = [ )

'*i%f)'i : Il[r —‘E’-)ﬂ} ({}3)% (A. 3)
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The final equation for the evaluation of the derivative is

d

dr

. B

’ jw\i :

| x (29
Ir

() o

-

. 17 . 1
iE [r(_lg)?_ |
v i v |
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APPENDIX B

1 1
SIMPLIFICATION OF I, (iiw) AND I, (izw)

In order to simplify Equation 28, the series definition of the modified

Bessel function was written from Reference 2.

2m+n
/ 1

B\ —_1
In(F) = O\D} " m! (m+n)!

to
™

3eqg

This equation may be written in an alternate form as

In(B) = (§>nm§;0(§>2m R S , (B. 2)

m! (m+n)!

A similar definition of the Bessel function of the first kind may be

written as

00
A m é 2m+tn 1
In(B) = Z’ -1 (2> m! (m+n)! ) (B.3)
m=0
After substitution of the identity i’ = -1, the above equation may be written

as

.. 2m

Jn (B) = (g)n (%i) m . (B.4)

Bpas

0

1
Writing the series for Iy (i® w) from Equation B. 2:

1 LI SN 1
I (iw) = ), ( > ) —— (B. 5)
o ' m!
) ) o \2m )
2 1
L (i2w) = Z (W L) m! m! (B.6)
m=0 \ 2 iz - me




=

By inspection, Equation B. 6 is equal to Jo (i 2 w), i.e.

1 g w zm 1
Jo (i"2w) = T i — . (B.7)
2, (0 =
It is therefore shown that
1 1
I (i*w) = Jo (i"2w) (B. 8)

1
Writing the series I} (i2 w) from Equation B. 2:

1 o N 2m
‘l 12 12 1
I, (i2w) = (1 ZW) Z ( 12W ) n—~_————1[ i 1) . (B.9)
m=0

2m

i I%W - 1
I, (iw) = L _— B. 10
o () 2,(5r ) mem o e
But
© 2m
1
-1 1
J, G 4wy = 2 L —_— B.11
1 (1 “w) (Zi%) mz=o(21% ) m! (m+1)! ( )

By comparison of Equations B, 10 and B. 11 it is seen that

L (Zw) = Jl(-‘f’;) (B. 12)

1 1
The functions Jp (w/i2) and J; (w/i2) are difficult to use due to the

imaginary argument. This may be simplified as follows:

1

c'é‘ .
o - T o= -ifw : (B. 13)
i2 ¢
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W
G

The functions Jo (—iEw) and J; (- il w) may be expanded in Equation B, 3

to show that

w
{8

Jo (-i%w) = Jo (i w) (B. 14)

o
w

T (% w) = -J, 3% w) . (B. 15)

—
™

The final expressions obtained for I (iE w) and I, (izw) are

1

I (iw) = Jp (i°w) (B. 16)

]

b

1 3
I (i’w) = - J,(i%w) . (B.17)

These relations have been substituted in Equation 29,
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APPENDIX C

EVALUATION OF lim I ¢
p>o

The validity of Equation 29

loff = —Ez"jzh i 2 - 2 a(_‘i)

3 1 3 1
may be shown by expanding Jo [i® a(w/v)2] and J,[i% a(w/v)2] in the

series definition of the Bessel function and taking the limit of the resulting

expression. For convenience, let

x = i%a(%f = i%a(i&)% . (C.2)

[1 G) G e ] .1

and
o0 2m .2m
Ji(x) = ('fzx—) Z, (lzi—) " m! 1(m+1)z
m=0

E) @R @) e
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For convenience, let

XV (-1)  { x\¢ 1 ]
t =) NS Tt
A YY ST Y I .5
IREGECE=r——
2 2 2! 2/ 2t 3! i
Taking the limit of a large coefficient of viscosity, the value x
approaches zero. The series given by Equation C.3 and C.4 may be
approximated by the first few terms because x is small. Making this
approximation,
2
2 [1 + (—’i }
x Jg (x) - 2 (C. 6)
J1 (%) Ll +(__> 1_1)_] '
112!

el _ o)y (3] ]

_ (%)‘2 (C.7)

Substituting the results of Equation C.7 into Equation C. 1:

3
12 2 2
. _2ma’hy i a(we .
E_rpw legf = o 2 -2+ > n 1
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I

- 2ma’hp | 3a2  wp .
4 B

mat*h
=—12———p (C. 8)

The moment of inertia of a cylinder about its axis is

1
Isolid = 5 ma’
cyl.
1 1
=E(1Ta2hp)a2 = ‘2‘1Ta4hp (C.9)

A comparison of Equations C.1i and C. 9 indicate that

. 1
Um Teff = Isolid = PR a*hp
H cyl.

The solution obtained in this report for the effective moment of
inertia of a liquid-filled cylinder about its longitudinal axis is valid in
the limit of a very viscous liquid. The value of the effective moment of
inertia for a cylinder filled with a liquid having a small coefficient of

viscosity is presented in the main text,
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The validity of this equation is shown by the fact that it satisfies the

boundary conditions at the tank wall and center of the tank.

conditions are

at

and

at

The ber; and bei; functions expanded in terms of a constant and a

trigonometric function are

ber;(a')
beil (a’)
ber;(r')

bei; {r')

The relations above when substituted into Equation D. 3 yield

Vor _ My(r')
Vo,  Mila)

1]

il

Va4

g
0, 3 L =0
$a
V¢r :
a, =
V¢r

M;(a') cos 0;(a')
Mj(a') sin 6;(a')
M;(r') cos 8;(r")

M (r') sin 6,(r'")

{[ cos 01 (r') cos 8;(a') + sin 0, (r') sin 9;(a')]

These boundary

>(D- 4)

+ i[ sin 8;(r') cos 0;(a') - cos B, (r') sin Gl(a')]} (D. 5)
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The properties of the trigonometric identities may be used to reduce the

above equation to a vector notation.

Vor _ Mi(r)
Vo | Mi(a')

exp i [6;(r') - 8,(a")] (D. 6)

The final equation for the velocity ratio used in the text is obtained

by substituting the values of r' and a' in Equation D, 6:

Voo MI[E' a(%&)%]

Vo " 1 ~exp i{8,[r/a - a (» P/P)%]" Ol[a(wp/p)%]} (D.7)
a M, [a(i“’_ﬁ 2}
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